FÍSICA: EL SONIDO Y LAS ONDAS: Fenomenos ondulatorios - 5ª parte

 Natureduca - Portal educativo de ciencia y cultura

 Menú principal - Índice principal Usuarios conectados 26 usuarios conectados


Física

EL SONIDO Y LAS ONDAS

Fenómenos ondulatorios - 5ª parte


1 2 3 4 5 6

El efecto Doppler

a frecuencia de un sonido está determinada por la frecuencia de la vibración que lo origina siempre que el foco que lo emite y el observador que lo percibe estén ambos en reposo. Cuando, ya sea el foco, ya sea el observador, están en movimiento, el sonido percibido presenta una frecuencia que depende de la velocidad.

Un observador situado ante la vía del tren aprecia que el sonido emitido por el silbato de una locomotora que pasa delante de él a gran velocidad es más agudo cuando se acerca (mayor frecuencia, f) y más grave cuando se aleja (menor frecuencia). Este efecto, según el cual la frecuencia percibido de un sonido depende del estado de movimiento del observador, del foco o de ambos, fue explicado por primera vez en 1842 por el físico austríaco Christian Doppler (1803-1853).


El efecto Doppler explica la diferencia de la frecuencia percibida según el estado de movimiento del foco del sonido, del observador o de ambos. Un ejemplo muy claro de este efecto se observa en las estaciones de tren, ya que el sonido del silbato del tren varía al alejarse. El mismo efecto lo podemos observar con la sirena de una ambulancia, que varía de tono cuando se aleja de nosotros.

Si, como en el caso de la locomotora, el observador O está en reposo y el foco emisor F de ondas sonoras está en movimiento, sucede que debido al avance del foco los frentes de ondas se comprimen en el sentido del movimiento. Es como si cada frente de ondas tendiera a alcanzar al emitido en un instante anterior. Lo contrario sucede en el sentido opuesto al movimiento y los frentes de ondas se separan. El movimiento del foco da lugar, en definitiva, a frentes de ondas excéntricos.

El cambio en la distancia entre los frentes de ondas equivale a una modificación en la longitud de onda l correspondiente y consiguientemente en la frecuencia observada. La nueva f' puede expresarse en términos matemáticos en la forma

donde v es la velocidad del sonido y vF la velocidad del foco. El término vF · T representa el espacio que recorre el foco en un intervalo de tiempo igual a un periodo T y, por tanto, la corrección que hay que aplicar a la longitud de onda l (espacio recorrido por el sonido en un periodo T) medida en ausencia de movimiento. Dicha corrección es positiva cuando el foco se acerca al observador y negativa cuando se aleja de él.

Expresando la anterior ecuación de modo que figure en ella la frecuencia f = v/l del sonido que se percibiría si el foco estuviera en reposo, se tiene:

sin más que dividir numerador y denominador por l.

Esta fórmula predice un salto de frecuencia de un tono musical completo si el foco pasa por delante del observador a 67 km/h. El propio Doppler organizó experimentos con trompetas dispuestas en vagones para comprobar la validez de sus explicaciones teóricas. Músicos profesionales, expertos en la apreciación de los tonos, hicieron las veces de instrumentos de medida de los saltos de frecuencia en sus experiencias.

Si es el observador el que se desplaza a una velocidad vo estando el foco en reposo, los frentes de onda mantienen en este caso su carácter concéntrico, pero la frecuencia percibido, es decir, el número de ellos que llegan al observador en la unidad de tiempo, será diferente. Si el observador se acerca al foco las velocidades de ambos se sumarán y se restarán si se aleja de él. Por tanto:

expresión que puede escribirse en la forma:

es decir:

siendo f' la frecuencia percibido por el observador y f la frecuencia emitida por el foco.

1 2 3 4 5 6

       

 Menú principal - Índice principal



Logo Asociación Española para la Cultura, el Arte y la Educación ASOCAE Creative Commons © ASOCAE ONGD, Asociación Española para la Cultura, el Arte y la Educación - www.asocae.org - RNA 592727 - CIF.: G70195805 ¦ Contacto  ¦  Bibliografía ¦  Política de privacidad ¦ Esta web NO utiliza cookies, ni guarda datos personales de los usuarios